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This contribution is an attempt to assess what can be learned from the remarkable success 
of the statistical model in describing ratios of particle abundances in ultra-relativistic heavy ion 
collisions. 

1. INTRODUCTION 

As already pointed out in the contribution by A. Bialas [l] the statistical model (see e.g. 
[ 2 ] )  works very well in describing/predicting measured ratios of particle abundances in ultra- 
relativistic heavy ion collisions. But even more remarkably, it works also for particle ratios 
measured in high energy proton-proton and even e+e- collisions. In this contribution we will 
take the success of the statistical model as given and rather ask ourselves what can be learned 
from that. A critical discussion of possible shortcomings of the statistical model is given in the 
contribution of J.  Rafelski [4]. 

In general a statistical description of a physical system is appropriate if the system has many 
degrees of freedom but is characterized only by few observables/measurements. This is e.g. 
the case in a thermal system, which is characterized only by the constants of motion, namely 
the energy (and momentum), volume and all the conserved particle numbers. (Of course in a 
canonical or grand canonical formulation, the energy andor particles number are replaced by 
the conjugate variables temperature and chemical potential). 

But not only a thermal system meets the requirements for a statistical description. Let us 
consider a high energy collision which produces many particles in the final state. If we are 
only interested in the number of pions produced, we constrain the final state very little, and 
thus statistical methods should be applicable. This is the idea of the statistical theory of particle 
production first invented by Fermi [5]. 

Now suppose the statistical model of Fermi applies for particle production in high energy 
collisions. Does that mean that we are dealing with a themial system in the sense of Boltzmann, 
where particle collisions keep the system in a state of equilibrium�? This is very unlikely in 
case of ece- collisions, where the produced particles hardly have a chance to re-interact. And 
actually explicit measurements [6] show no indication for interaction among the partons from 
different jets in e+e- collisions (see also contribution by H. Satz [7]). Therefore, �statistical� 
does not always mean �themiodynanlic� in the sense that one is dealing with matter in thermal 
equilibrium, and that one can define a pressure and an equation of state. Statistical may simply 
mean phase-space dominance and the �teiiiperatiires� and �chemical� potentials are nothing hut 
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Lagrange multipliers characterizing the phase-space integral [8-101 
This, however, may be different in a heavy ion collision. There one would naively expect (this 

is actually the main motivation for such coniplicated experiments) that the initially produced 
particles do re-interact on the paitonic and/or hadronic level. The question then is, how to 
experimentally establish that a sufficient amount of re-interaction has taken place and that matter 
in the Boltzmann sense has been formed. 

This contribution is organized as follows. In the fist  section, we will discuss the phase- 
space (or statistical model) for elenientaiy collisions such as efe-. Then we will proceed with 
nucleus-nucleus collisions. Finally we will try to assess to which extent a case for theimal 
matter can be made in nucleus-nucleus collisions. We will conclude with a discussion on what 
the statistical variables extracted from particle ratios can tell us about the phase stiucture of 
QCD. 

2. PHASE-SPACE DOMINANCE 

Let us consider a high energy collision of elementary particles such as efe- or proton proton. 
The probability to produce n particles of a given species, such as pions, is given by 

where PIT+ denotes the probability to find n particles of interest and x other particles in the final 
state, 

Here E is the total energy of the system, which we consider in the center of momentum frame. 
The total multiplicity in is given by 

111 = I1 +s. (3)  

In case of inany particles in the final state, m >> 1, one integrates over a large phase-space 
volume. As a result the details of the matrix element M(y1~ .  . . , qln; pi, p 2 )  become less relevant. 
Instead one is sensitive to a phase-space average of the matrix element. Thus we can rewiite eq. 
(2) as 

where 
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is the nlicro-canonical m-particle phase-space volume known from statistical physics, and 

denotes the phase-space averaged ni-particle matrix element. 
Obviously, if 3, is simply a constant, independent of m, and thus independent on n and x, 

the relative probability to find a given nuniber of particles is simply given by the ratio of the 
phase-space volumes, 

or in other words, it is given by statistics only. 
Similarly, the mean number of particles in this case is, up to a constant, given by statistics 

I 1  f l , A  

where denotes the constant averaged matrix element. Obviously, in this case particle ratios are 
given only by statistics, as the constant s drops out. Note, that for a large average niultiplicity 
(m)  = ( n + x ) ,  the sum in eq. (8) will be dominated by a few terms with n fx E ( m ) .  This is 
analogous to the the grand-canonical approximation in statistical physics. 

If the mean multiplicity is large, (m)  >> 1, then the micro-canonical phase-space volume 
am ( E )  may be evaluated in the canonical or grand-canonical approximation [8-101 leading 
to Lagrange multipliers, which in the thermodynamic framework are the temperature and the 
chemical potential. In the situation at hand, however, these Lagrange multipliers do not have a 
physical meaning. They simply characterize the phase-space integral. Their actual magnitude 
depends on the available energy as well as on the density of states, i.e., the hadronic mass 
spectrum. They, however, do not reflect exchange of energy with a heat-bath, as is the case for 
the temperature in the canonical ensemble of thermal physics. Thus, in order to avoid confusion, 
we will denote the application of statistical physics in the non thermodynamics context by 
"phase-space dominance ". 

2.1. Conditions on the matrix elements 
As discussed above, the essential assumption for phase-space dominance to work is that the 

phase-space averaged matrix elements (6) are constant, independent of rn. What requirements 
does this impose on the matrix elements? Obviously, if the matrix elements siniply scale with 
the multiplicity rn like 

m 

lMm12 = c (V’. n E i )  (9) 
i= 1 

with C being a constant, the condition is fultilled. The scaling with n:tl Ei is simply due to 
the normalization of the states, and thus is not a dynanical constraint. The scaling with V"’ on 
the other hand is not trivial and implies that there is only one relevant length/mass scale in  the 
pmblem. Before we discuss this in  more detail let us list other conditions, which the matrix 
element has to satisfy. 
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Absence of strong correlations. Coil-elations iiiiply that the matrix element provides iiiore 
support in localized regions of phase space. Consequently it i s  far from being constant. 
Or in other words, the integral in eq. (6) will only have support in a limited region leading 
to a decrease of SJ,, with increasing m. 

Absence of strong energy dependence in the matrix element. This is similar to the pre- 
vious condition and actually related. Strong energy dependence (other than the trivial 
one from the noinialization factors of the states) obviously implies a non-constant matrix 
element. 

0 Absence of strong inteiference effects, which lead to both coirelations and energy depen- 
dencies. 

Hadronic resonances, such as p mesons give rise to conelations and energy dependencies. 
And indeed, the statistical model fails to reproduce the data if only tiue final state particles 
such as pions, kaons etc. are taken into account [ 1 I]. Instead, the successful fits of the particle 
ratios are obtained only if the hadronic resonances are part of the statistical ensemble. This 
way, the coirelations are removed from the matrix elements and put into the "final" states, in 
the spirit of [ 121. This is schematically depicted in Fig. 1. Thus, the relevant phase-space to be 

/ 

Figure 1. Resonances in the final state. 

considered is a phase-space of all hadronic resonances aiid the matrix element is reduced to one 
with resonances in the final state 

As a result the reduced matrix element M R  is free of all the correlations introduced by the 
resonances aiid, therefore, it is more likely that it meets the requirements stated above. 

Let us retuiii to the issue of the volume dependence of the matrix element. Only if the iiiatiix 
element scales with the volume as given by eq. (9), the statistical approach is justified. From 
dimensional arguments an m-particle niatiix element has the coil’ect scaling behavior. 
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In general there may be several lengthlmass scales contributing to the matrix element, such 
as e.g. the hadronic resonances. In this case the statistical approach should not work. If, on 
the other hand, all the dynamical mass scales of QCD aside from A Q ~ D  are the masses of the 
resonances, then the reduced matrix element MR (10) contains only AQCD, and the statistical 
approach will work as long as the volume is of the size of l/A&. This would be about the 
size of the proton, which appears to be a reasonable size for a volume in an elementary particle 
collision. We should note, however, that the tits to proton-proton collisions [ 131 lead to volumes 
of the order of 20fm3, which is somewhat on the large side of what one would expect from our 
considerations here. 

The constraints on the intrinsic mass scales, however, are not as severe as it might appear 
from the previous considerations. If the mean multiplicity ( m )  is large, the particle production 
is dominated by events with final state multiplicities near ( m ) ,  i.e. m = n +x is approximately 
constant for all n. And, therefore, the condition (9) is fulfilled trivially. 

Finally, the matrix element is responsible for conservation laws due to intrinsic symmetries, 
such as strangeness, charge and baryon number. This, however, is already accommodated in 
the statistical approach. If the amount of conserved quanta is small, one may have to use a 
canonical description instead of a grand canonical one. But this is all within the framework of 
statistical physics, which actually is based on conservation laws. 

[ pp d S = 27.4 GeV I- 

Figure 2. Fit of statistical model to particle ratio in proton-proton collisions (from [13]). 

The success of the statistical tits to the particle ratios for e+e- as well as proton proton is 
demonstrated in  Fig. ( 2 ) .  As already pointed out, these tits are based o n  a statistical ensemble of 
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hadronic resonances. Following the above arguments, we may conclude from the success of the 
statistical model that the relevant dynanlical correlations and mass scales of QCD are contained 
in the hadronic resonances. In order to see more subtle dynamic effects, one probably has 
to resoit to higher order correlations. The alternative conclusion would be that even in efe- 
collisions, re-scattering leads to a true therniodynanic system. This, however, is difficult to 
imagine and there is no experimental evidence for any re-scattering [6,7]. 

Finally, let us point out that the statistical niodel also seems to work for correlation measure- 
ments of strange particles [ 131, such as &K,. In the statistical approach, these correlations are 
mostly due to strangeness conservation and the agreement with the data indicates the absence 
of strong dynamical correlations. 

3. NUCLEUS-NUCLEUS COLLISIONS 

As we have discussed above, the success of the statistical model in describing particle yields 
in  proton-proton collisions can be understood as a result of phase-space dominance. The goal 
of nucleus nucleus collisions, however, is to create matter, i.e., a thermal system in the sense 
of Boltzmann, where particle collisions lead to and maintain thermal equilibrium. It is only in 
this situation, where we can give the Lagrange multipliers "T" and "p" the physical meaning of 
temperature and chenlical potential. 

Obviously, if each individual nucleon-nucleon collision can be described by a statistical ap- 
proach, we expect the statistical model to work even better in a nucleus-nucleus collision. And 
indeed it does, as can be seen fromFig.3. But how do we know that the statistical behavior of a 
nucleus-nucleus collision is again not siniply phase-space donlinance? 

Figure 3. Fit of statistical model to particle ratio in Au+Au collisions at RHIC energies [14]. 

To illustrate this point, let us assume for a Inonleiit that a nucleus-nucleus collision is a simple 
superposition of " N ’  nucleon-nucleon collisions. Let us also assume that nucleon-nucleon col- 
lisions can be described by statistics as a result of phase-space doninance. If we were dealing 
with a simple classical ideal gas without additional constraints from conservation laws, the par- 
tition function of the nucleus-nucleus system Z,,,, i s  siinply the product of the partition functions 
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of the nucleon-nucleon collisions Z,,, 

N 
zz = n Z?,, . 

i=l 

This situation is sketched in Fig.4a. There is no cross talk between the individual systems. On 

Figure 4. Individual nucleon-nucleon collisions (a) and nucleus-nucleus collision (b). 

the other hand Z g  also represents the partition function of a system of volume 

V m  = NV,, 

which would correspond to the system depicted in Fig.4b, and thus to �matter�, or in other 
words 

So in this case there would be simply no way to distinguish between situation (a) and (b) in 
Fig.4 within a statistical framework. 

So how can we find out if indeed themialized matter has been created in a heavy ion colli- 
sions? 

Obviously the factorization condition (14) will break down, once we probe the boundaries 
of phase-space available for a nucleon-nucleon collision, where the statistical model will not 
work. This could for example be achieved by studying n-particle correlations, with n larger 
than the average multiplicity of a nucleon-nucleon collision, n >> (N) l l l , .  If, such a n-particle 
correlation would still look �thermal� in an AA collision, then the vastly bigger phase space of 
an AA-system has been populated by scattering processes, and we may talk about �matter�. 

The sensitivity of this approach can be improved by looking at conserved quantum numbers. 
If additional conservation laws, such as strangeness, are at work, phase space is even more 
restricted and factorization may break down already on the single particle level. Consider for 
example strangeness conservation. In scenario (a), strangeness has to be conserved for each 
nucleon-nucleon collision separately, whereas in (b) conservation applies only to the entire 
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system. This additional constraint is most relevant if the number of strange particles produced in 
a nucleon-nucleon collision is small, N, 5 1. If N, >> 1 a grand-canonical treatment is adequate 
and factorization (14) works again at least on the single particle level. Consequently, in this 
case multi-particle correlations need to be investigated. 

In nucleon-nucleon collisions a canonical treatment, where strangeness as well as baryon 
number are conserved explicitely, is required to explain the particle abundances [ 13,161. Also 
for lower energy and peripheral heavy ion collisions, the explicit treatment of strangeness con- 
servation seems to required [ 171. 

In [ 161 the centrality dependence of the strange baryon yields was studied based on the above 
concepts. The authors found, that the centrality dependence of the Q enhancement should 
flatten out, once the volume over which strangeness is consei-ved exceeds that of about 20 time 
the volume of a nucleon. Therefore, if a flat centrality dependence of the Q enhancement is 
observed, one can conclude that strangeness has "percolated" at least over a volume 20 times as 
large as in a nucleon-nucleon collision. This would be a necessary but not sufficient condition 
for the existence of matter. Unfortunately the results reported by the NA57 collaboration [18] 
show a steep increase of the Q enhancement up to the highest centralities. 

However, even if the centrality dependence of the Q-enhancement is not completely un- 
derstood, the fact that there is an SZ-enhancement clearly shows that a nucleus-nucleus colli- 
sion is more than simply a superposition of nucleon-nucleon collisions. And there is evidence 
from other obsei-vables that a certain amount of re-scattering is taking place in heavy ion col- 
lisions. Flow, radial or elliptic, would be difficult to understand without re-scattering on the 
patonichadronic level. To which extent they are sufficient to form matter in the Boltzmann 
sense is, however, not clear. 

So have we fomied matter in these collisions? A definitive answer to this question requires 
additional measurements such as multi-particle correlations of conserved quantities. At lower 
energy (1 - 2 AGeV) collisions, the measurement of kaon pairs for example provides a sensitive 
measurement on the degree of equilibrium reached [ 191. At higher energies one night think 
about multiple Q production, in order to really probe the boundaries of phase-space. 

But we also have no evidence against the hypothesis of thermal equilibrium. Quite to the 
contrary, there is evidence for the -necessary re-scattering from flow and dilepton production 
as well as Q-enhancement. Therefore, let us assume that we indeed have been able to create 
matter in these collision. In this case, we may interpret the Lagrange multipliers T and p as 
temperature and chemical potential. The result of fits to system at different collision energies 
[ 15,171 is shown in Fig.5. 

Does Fig.5 reflect a measurement of the phase-separation line in the QCD phase diagram’? 
Certainly not! All it shows are the theinial parameters at which the systems fall out of chemical 
equilibrium under the assumption of unchanged paiticle properties. Does it tell us about a 
limiting temperature’? Maybe! Suppose that LHC experiments lead to the same temperatwe of 
T N 170MeV. If at the same time radial flow increases considerably above the values observed 
at RHIC, then we can conclude that indeed much more energy has been deposited into the 
initial paitonic system than reflected by the final temperature. Otherwise, one could argue that 
the constant temperature simply reflects the decreasing efficiency of depositing energy in the 
central rapidity region. Actually the radial flow from RHIC seems to be slightly larger than that 
extracted at the SPS [20,21]. 



116c % Koch/Nuclear Physics A715 (2003) 108c-ll7c 

I 1 

I I 

0 0  0 2  0 4  0 6  0 8  

P i  m v . ?  

Figure 5. Results of thermal fits to particle ratios for different beam energies. Figure adapted 
from [ 171. 

4. CONCLUSIONS 

We have discussed the phase-space dominance assumption in the context of particle pro- 
duction in nucleon-nucleon, efe- and nucleus-nucleus collisions. The fact that the statistical 
model is able to explain observed particle ratios in these experiments may simply be a result of 
this assumption. We also have attempted to assess the difference between nucleus-nucleus and 
nucleon-nucleon collisions, and to which extent matter is produced in the fornier. While there is 
evidence for re-scattering processes to take place, we have not yet definitively established that a 
thermal system has been created in these collisions. A detailed study of multi-particle coirela- 
tions of conserved quanta is one possible way to address this issue. Finally, we have argued that 
even if we consider the parameters extracted from the fits to the statistical model as temperature 
and chenlical potential, the energy dependence of these parameters is not a measurement of the 
phase separation line of QCD. 
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